Wednesday, 5 September 2012

Does Objective Reality Exist? Ref Talbot/The Holographic Universe.


Blogger Reference Link http://www.p2pfoundation.net/Multi-Dimensional_Science





note: because important websites are frequently "here today but gone tomorrow", the following was
archived from  http://www.rense.com/general69/holoff.htm  on March 10, 2006.  This is NOT
an attempt to divert readers from the aforementioned website.  Indeed, the reader should only
read this back-up copy if it cannot be found at the original author's site.



The Holographic Universe
Does Objective Reality Exist?
by Michael Talbot
3-12-2006


In 1982, a remarkable event took place.  At the University of Paris, a research team led by physicist
Alain Aspect performed what may turn out to be one of the most important experiments of the 20
th Century.  You did not hear about it on the evening news.  In fact, unless you are in the habit of reading
scientific journals, you probably have never even heard Aspect's name though there are some who
believe his discovery may change the face of Science.

Aspect and his team discovered that under certain circumstances subatomic particles such as
electrons are able to instantaneously communicate with each other regardless of the distance separating
them. It doesn't matter whether they are 10 feet or 10 billion miles apart.

Somehow, each particle always seems to know what the other is doing.  The problem with this feat is
that it violates Einstein's long-held tenet that no communication can travel faster than the speed-of-light. 
Since traveling faster than the speed -of-light is tantamount to breaking the time barrier, this daunting
prospect has caused some physicists to try to come up with elaborate ways to explain away Aspect's
findings.  But it has inspired others to offer even more radical explanations.

University of London physicist David Bohm, for example, believes Aspect's findings imply that
objective reality does not exist.  That despite its apparent solidity, the Universe is at heart a phantasm --
a gigantic and splendidly detailed hologram.

To understand why Bohm makes this startling assertion, one must first understand a little about
holograms.  A hologram is a 3-dimensional photograph made with the aid of a laser.
To make a hologram, the object to be photographed is first bathed in the light of a laser beam.  Then
a second laser beam is bounced off the reflected light of the first and the resulting interference pattern
(the area where the 2 laser beams commingle) is captured on film.

When the film is developed, it looks like a meaningless swirl of light and dark lines.  But as soon as
the developed film is illuminated by another laser beam, a 3-dimensional image of the original object
appears.

The 3-dimensionality of such images is not the only remarkable characteristic of holograms.  If a
hologram of a rose is cut in half and then illuminated by a laser, each half will still be found to contain
the entire image of the rose.2

Indeed, even if the halves are divided again, each snippet of film will always be found to contain a
smaller-but-intact version of the original image.  Unlike normal photographs, every part of a hologram
contains all the information possessed by the whole.
The "whole in every part" nature of a hologram provides us with an entirely new way of
understanding organization and order.  For most of its history, Western science has labored under the
bias that the best way to understand a physical phenomenon -- whether a frog or an atom -- is to dissect
it and study its respective parts.
A hologram teaches us that some things in the Universe may not lend themselves to this approach. 
If we try to take apart something constructed holographically, we will not get the pieces of which it is
made.  We will only get smaller wholes.
This insight suggested to Bohm another way of understanding Aspect's discovery.  Bohm believes
the reason subatomic particles are able to remain in contact with one another regardless of the distance
separating them is not because they are sending some sort of mysterious signal back-and-forth, but
because their separateness is an illusion.  He argues that at some deeper level of reality such particles
are not individual entities, but are actually extensions of the same fundamental something.
To enable people to better visualize what he means, Bohm offers the following illustration.
Imagine an aquarium containing a fish.  Imagine also that you are unable to see the aquarium
directly.  Your knowledge about it and what it contains comes from 2 television cameras -- one directed
at the aquarium's front and the other directed at its side.

As you stare at the 2 television monitors, you might assume that the fish on each of the screens are
separate entities.  After all, because the cameras are set at different angles, each of the images will be
slightly different.  But as you continue to watch the 2 fish, you will eventually become aware that there
is a certain relationship between them.
When one turns, the other also makes a slightly different but corresponding turn.  When one faces
the front, the other always faces toward the side.  If you remain unaware of the full scope of the
situation, you might even conclude that the fish must be instantaneously communicating with one
another.  But this is clearly not the case.

This, says Bohm, is precisely what is going on between the subatomic particles in Aspect's
experiment.

According to Bohm, the apparent faster-than-light connection between subatomic particles is really
telling us that there is a deeper level of reality we are not privy to -- a more complex dimension beyond
our own that is analogous to the aquarium.  And, he adds, we view objects such as subatomic particles as
separate from one another because we are seeing only a portion of their reality.

Such particles are not separate "parts", but facets of a deeper and more underlying unity that is
ultimately as holographic and indivisible as the previously mentioned rose. And since everything in
physical reality is comprised of these "eidolons", the Universe is itself a projection -- a hologram.
In addition to its phantom-like nature, such a Universe would possess other rather startling features. 
If the apparent separateness of subatomic particles is illusory, it means that at a deeper level of reality all
things in the Universe are infinitely interconnected.3

The electrons in a carbon atom in the human brain are connected to the subatomic particles that
comprise every salmon that swims, every heart that beats, and every star that shimmers in the sky.
Everything interpenetrates everything.  And although human nature may seek to categorize,
pigeonhole, and subdivide the various phenomena of the Universe, all apportionments are of necessity
artificial.  And all of Nature is ultimately a seamless web.

In a holographic universe, even time and space could no longer be viewed as fundamentals.  Because
concepts such as location break down in a universe in which nothing is truly separate from anything
else, time and 3-dimensional space -- like the images of the fish on the TV monitors -- would also have
to be viewed as projections of this deeper order.

At its deeper level reality is a sort of super-hologram in which the Past, Present, and Future all exist
simultaneously.  This suggests that given the proper tools it might even be possible to someday reach
into the super-holographic level of reality and pluck out scenes from the long-forgotten Past.
What else the super-hologram contains is an open-ended question.  Allowing  -- for the sake of
argument -- that the super-hologram is the matrix that has given birth to everything in our Universe, at
the very least it contains every subatomic particle that has been or will be  -- every configuration of
matter and energy that is possible from snowflakes to quasars to blue whales to gamma rays.  It must be
seen as a sort of cosmic storehouse of "All That Is",

Although Bohm concedes that we have no way of knowing what else might lie hidden in the superhologram, he does venture to say that we have no reason to assume it does not contain more.  Or as he
puts it, perhaps the super-holographic level of reality is a "mere stage" beyond which lies "an infinity of
further development".

Bohm is not the only researcher who has found evidence that the universe is a hologram.  Working
independently in the field of brain research, Stanford neurophysiologist Karl Pribram has also become
persuaded of the holographic nature of reality.

Pribram was drawn to the holographic model by the puzzle of how and where memories are stored in
the brain.  For decades, numerous studies have shown that rather than being confined to a specific
location, memories are dispersed throughout the brain.

In a series of landmark experiments in the 1920s, brain scientist Karl Lashley found that no matter
what portion of a rat's brain he removed, he was unable to eradicate its memory of how to perform
complex tasks that it had learned prior to surgery.  The only problem was that no one was able to come
up with a mechanism that might explain this curious "whole in every part" nature of memory storage.
Then in the 1960s, Pribram encountered the concept of holography and realized that he had found
the explanation brain scientists had been looking for.  Pribram believes memories are encoded not in
neurons or small groupings of neurons, but in patterns of nerve impulses that crisscross the entire brain
in the same way that patterns of laser light interference crisscross the entire area of a piece of film
containing a holographic image.  In other words, Pribram believes the brain itself is a hologram.
Pribram's theory also explains how the human brain can store so many memories in so little space.  It
has been estimated that the human brain has the capacity to memorize something on the order of 10
billion bits of information during the average human lifetime (or roughly the same amount of
information contained in 5 sets of the Encyclopaedia Britannica).4

Similarly, it has been discovered that in addition  to their other capabilities, holograms possess an
astounding capacity for information storage.  Simply by changing the angle at which the 2 lasers strike a
piece of photographic film, it is possible to record many different images on the same surface.  It  has
been demonstrated that 1 cubic centimeter of film can hold as many as 10 billion bits of information.
Our uncanny ability to quickly retrieve whatever information we need from the enormous store of
our memories becomes more understandable if the brain functions according to holographic principles. 
If a friend asks you to tell him what comes to mind when he says the word "zebra", you do not have to
clumsily sort back through some gigantic and cerebral alphabetic file to arrive at an answer.  Instead,
associations like "striped", "horse-like", and "animal native to Africa" all pop into your head instantly.
Indeed, one of the most amazing things about the human thinking process is that every piece of
information seems instantly cross-correlated with every other piece of information -- another feature
intrinsic to the hologram.  Because every portion of a hologram is infinitely interconnected with ever
other portion, it is perhaps Nature's supreme example of a cross-correlated system.

The storage of memory is not the only neurophysiological puzzle that becomes more tractable in
light of Pribram's holographic model of the brain.  Another is how the brain is able to translate the
avalanche of frequencies it receives via the senses (light frequencies, sound frequencies, and so on) into
the concrete world of our perceptions.  Encoding and decoding frequencies is precisely what a hologram
does best.  Just as a hologram functions as a sort of lens  -- a translating device able to convert an
apparently meaningless  blur of frequencies into a coherent image  -- Pribram believes the brain also
comprises a lens and uses holographic principles to mathematically convert the frequencies it receives
through the senses into the inner world of our perceptions.
An impressive body of evidence suggests that the brain uses holographic principles to perform its
operations.  Pribram's theory, in fact, has gained increasing support among neurophysiologists.
Argentinian-Italian researcher Hugo Zucarelli recently extended the holographic model into the
world of acoustic phenomena.  Puzzled by the fact that humans can locate the source of sounds without
moving their heads (even if they only possess hearing in one ear), Zucarelli discovered that holographic
principles can explain this ability.

Zucarelli has also developed the technology of holophonic sound -- a recording technique able to
reproduce acoustic situations with an almost uncanny realism.

Pribram's belief that our brains mathematically construct "hard" reality by relying on input from a
frequency domain has also received a good deal of experimental support.

It has been found that each of our senses is sensitive to a much broader range of frequencies than
was previously suspected.
Researchers have discovered, for instance, that our visual systems are sensitive to sound frequencies;
that our sense of smell is in part dependent on what are now called "cosmic frequencies"; and that even
the cells in our bodies are sensitive to a broad range of frequencies.  Such findings suggest that it is only
in the holographic domain of consciousness that such frequencies are sorted out and divided up into
conventional perceptions.
But the most mind-boggling aspect of Pribram's holographic model of the brain is what happens
when it is put together with Bohm's theory.  For if the concreteness of the World is but a secondary 5
reality and what is "there" is actually a holographic blur of frequencies  -- and if the brain is also a
hologram and only selects some of the frequencies out of this blur and mathematically transforms them
into sensory perceptions -- what becomes of objective reality?
Put quite simply, it ceases to exist.  As the religions of the East have long upheld, the material world
is Maya (an illusion).  And although we may think we are physical beings moving through a physical
World, this too is an illusion.
We are really "receivers" floating through a kaleidoscopic sea of frequency.  And what we extract
from this sea and transmogrify into physical reality is but one channel from many extracted out of the
super-hologram.

This striking new picture of reality -- the synthesis of Bohm and Pribram's views -- has come to be
called the holographic paradigm.  And although many scientists have greeted it with skepticism, it has
galvanized others.  A small-but-growing group of researchers believe it may be the most accurate model
of reality science has arrived at thus far.  More than that, some believe it may solve some mysteries that
have never before been explainable by Science and even establish the paranormal as a part of Nature.
Numerous researchers -- including Bohm and Pribram -- have noted that many para-psychological
phenomena become much more understandable in terms of the holographic paradigm.
In a universe in which individual brains are actually indivisible portions of the greater hologram and
everything is infinitely interconnected, telepathy may merely be the accessing of the holographic level.
It is obviously much easier to understand how information can travel from the mind of individual 'A'
to that of individual 'B' at a far distance point.  And it helps to understand a number of unsolved puzzles
in psychology.  In particular, Grof feels the holographic paradigm offers a model for understanding
many of the baffling phenomena experienced by individuals during altered states of consciousness.
i

No comments:

Post a Comment

Reviving the Ancient Polymath Spirit to Meet Modern Challenges We can embrace interdisciplinary learning for innovative problem-solving. Posted January 16, 2025 | Reviewed by Gary Drevitch

  by   Nigel R. Bairstow Ph.D. Disconnection Dynamics Psychology Today Key points Ancient Arab polymaths excelled by integrating diverse kno...