Monday, 15 October 2012

Hallucinogens

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Hallucinogens are a general group of pharmacological agents that can be divided into three broad categories: psychedelics, dissociatives, and deliriants. These classes of psychoactive drugs have in common that they can cause subjective changes in perception, thought, emotion and consciousness. Unlike other psychoactive drugs, such as stimulants and opioids, these drugs do not merely amplify familiar states of mind, but rather induce experiences that are qualitatively different from those of ordinary consciousness. These experiences are often compared to non-ordinary forms of consciousness such as trance, meditation, dreams, or insanity.
L. E. Hollister's criteria for establishing that a drug is hallucinogenic is:[1]
  • in proportion to other effects, changes in thought, perception, and mood should predominate;
  • intellectual or memory impairment should be minimal;
  • stupor, narcosis, or excessive stimulation should not be an integral effect;
  • autonomic nervous system side effects should be minimal; and
  • addictive craving should be absent.
Not all drugs produce the same effect and even the same drug can produce different effects in the same individual on different occasions.

Contents

[hide]

[edit] Nature of the drugs

The term hallucinogen is a misnomer because these drugs do not cause hallucinations at typical doses. Hallucinations, strictly speaking, are perceptions that have no basis in reality, but that appear entirely realistic. A typical "hallucination" induced by a psychedelic drug is more accurately described as a modification of regular perception, and the subject is usually quite aware of the illusory and personal nature of their perceptions. Deliriants, such as diphenhydramine and atropine, may cause hallucinations in the proper sense.
Psychedelics, dissociatives, and deliriants have a long history of use within medicinal and religious traditions around the world. They are used in shamanic forms of ritual healing and divination, in initiation rites, and in the religious rituals of syncretistic movements such as União do Vegetal, Santo Daime, and the Native American Church. When used in religious practice, psychedelic drugs, as well as other substances like tobacco, are referred to as entheogens. Also, in some states and on some reservations, certain drugs like peyote are classified as part of a recognized religious ceremony, and if used in said ceremonies, are considered legal. In Canada, mescaline is listed as prohibited under schedule III of the Controlled Drugs and Substances Acts, but peyote is specifically exempt and legally available in Canada. Starting in the mid-20th century, psychedelic drugs have been the object of extensive attention in the Western world. They have been and are being explored as potential therapeutic agents in treating depression, posttraumatic stress disorder, obsessive–compulsive disorder, alcoholism, opiate addiction, cluster headaches, and other ailments. Early military research focused on their use as incapacitating agents. Intelligence agencies tested these drugs in the hope that they would provide an effective means of interrogation, with little success.
Yet the most popular, and at the same time most stigmatized, use of psychedelics in Western culture has been associated with the search for direct religious experience, enhanced creativity, personal development, and "mind expansion". The use of psychedelic drugs was a major element of the 1960s counterculture, where it became associated with various social movements and a general atmosphere of rebellion and strife between generations.
Despite prohibition, the recreational, spiritual, and medical use of psychedelics continues today. Organizations, such as MAPS and the Heffter Research Institute, have arisen to foster research into their safety and efficacy, while advocacy groups such as the Center for Cognitive Liberty and Ethics push for their legalization. In addition to this activity by proponents, hallucinogens are also widely used in basic science research to understand the mind and brain. However, ever since hallucinogenic experimentation was discontinued in the late 1960s, research into the therapeutic applications of such drugs have been almost nonexistent, that is until this last decade where research has finally been allowed to resume. In some cases, this includes research in humans, like that conducted by Roland Griffiths and colleagues.

[edit] Psychedelics (classical hallucinogens)

One "Blotter" sheet of 225 LSD doses.
The word psychedelic (From Ancient Greek ψυχή (psychê) mind, soul + δηλος (dêlos) manifest, reveal + -ic) was coined to express the idea of a drug that makes manifest a hidden but real aspect of the mind. It is commonly applied to any drug with perception-altering effects such as LSD, psilocybin, DMT, 2C-B, mescaline and DOB as well as a panoply of other tryptamines, phenethylamines and yet more exotic chemicals.
The term "psychedelic" is used interchangeably with "psychotomimetic" and "hallucinogen",[2] thus it can refer to a large number of drugs such as classical hallucinogens (LSD, psilocybin, mescaline, etc.), empathogen-entactogens (e.g. MDMA), cannabinoids, and some dissociative drugs (e.g. Salvia divinorum and ketamine). The classical hallucinogens are considered to be the representative psychedelics and LSD is generally considered the prototypical psychedelic.[2] In order to refer to the LSD-like psychedelics, scientific authors have used the term "classical hallucinogen" in the sense defined by Glennon (1999): "The classical hallucinogens are agents that meet Hollister’s original definition, but are also agents that: (a) bind at 5-HT2 serotonin receptors, and (b) are recognized by animals trained to discriminate 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) from vehicle.[3] Otherwise, when the term "psychedelic" is used to refer only to the LSD-like psychedelics (a.k.a. the classical hallucinogens), authors explicitly point that they intend "psychedelic" to be understood according to this more restrictive interpretation (e.g. see Nichols, 2004).[4]
Common herbal and fungal sources of psychedelics include psilocybin mushrooms (largely species in the Psilocybe genus), various ingredients of ayahuasca preparations (e.g. Psychotria viridis), and peyote (Lophophora williamsii).
One explanatory model for the experiences provoked by hallucinogens is the "reducing valve" concept, first articulated in Aldous Huxley's book The Doors of Perception.[5] In this view, the drugs disable the brain's "filtering" ability to selectively prevent certain perceptions, emotions, memories and thoughts from ever reaching the conscious mind. This effect has been described as mind expanding, or consciousness expanding, for the drug "expands" the realm of experience available to conscious awareness.[citation needed]
Psychedelic effects can vary depending on the precise drug and dosage, as well as the set and setting. "Trips" range between the short but intense effects of intravenous DMT to the protracted ibogaine experience, which can last for days. Appropriate dosage ranges from extremely low (LSD) to rather high (mescaline). Some drugs, like the auditory hallucinogen DiPT, act specifically to distort a single sense, and others have more diffuse effects on cognition generally. Some are more conducive to solitary experiences (entactogenic) while others are conducive to social, bonding experiences (empathogenic).
Though the natural drugs have a long history of use and usually have an extensive study profile aside from the mortality rates of the drugs, in recent times there has been large production of hundreds of virtually unstudied psychedelics (many created by Alexander Shulgin and documented in his books PiHKAL and TiHKAL) that may be potentially harmful. This is especially the case with the designer drugs in the psychedelic-amphetamine class. Because of this factor, one should not make the generalization that all psychedelics cannot be potentially harmful at normal doses.

[edit] Dissociatives

Dissociatives produce analgesia, amnesia and catalepsy at anesthetic doses.[6] They also produce a sense of detachment from the surrounding environment, hence "the state has been designated as dissociative anesthesia since the patient truly seems disassociated from his environment."[7] Dissociative symptoms include the disruption or compartmentalization of "...the usually integrated functions of consciousness, memory, identity or perception."[8]p. 523 Dissociation of sensory input can cause derealization, the perception of the outside world as being dream-like or unreal. Other dissociative experiences include depersonalization, which includes feeling detached from one's body; feeling unreal; feeling able to observe one's actions but not actively take control; being unable to recognize one's self in the mirror while maintaining rational awareness that the image in the mirror is the same person.[9][10][11] Simeon (2004) offered "...common descriptions of depersonalisation experiences: watching oneself from a distance (similar to watching a movie); candid out-of-body experiences; a sense of just going through the motions; one part of the self acting/participating while the other part is observing;...."[12]
The primary dissociatives achieve their effect through blocking the signals received by the NMDA receptor set (NMDA receptor antagonism) and include ketamine, phencyclidine (PCP), dextromethorphan (DXM), and nitrous oxide.[13][14][15] However, dissociation is also remarkably administered by salvinorin A's (the active constituent in Salvia divinorum shown to the left) potent κ-opioid receptor agonism[16] and is notably the most potent psychoactive chemical harnessed directly from the plant kingdom.
Some dissociatives can have CNS depressant effects, thereby carrying similar risks as opioids, which can slow breathing or heart rate to levels resulting in death (when using very high doses). DXM in higher doses can increase heart rate and blood pressure and still depress respiration. Inversely, PCP can have more unpredictable effects and has often been classified as a stimulant and a depressant in some texts along with being as a dissociative. While many have reported that they "feel no pain" while under the effects of PCP, DXM and Ketamine, this does not fall under the usual classification of anesthetics in recreational doses (anesthetic doses of DXM may be dangerous). Rather, true to their name, they process pain as a kind of "far away" sensation; pain, although present, becomes a disembodied experience and there is much less emotion associated with it. As for probably the most common dissociative, nitrous oxide, the principal risk seems to be due to oxygen deprivation. Injury from falling is also a danger, as nitrous oxide may cause sudden loss of consciousness, an effect of oxygen deprivation. Because of the high level of physical activity and relative imperviousness to pain induced by PCP, some deaths have been reported due to the release of myoglobin from ruptured muscle cells. High amounts of myoglobin can induce renal shutdown.[17] Along with most, if not all of the chemicals in this article, none of the dissociatives have any physically addictive properties, though psychological addiction has been observed.
Many users of dissociatives have been concerned about the possibility of NMDA antagonist neurotoxicity (NAN). This concern is partly due to William E. White, the author of the DXM FAQ, who claimed that dissociatives definitely cause brain damage.[18] The argument was criticized on the basis of lack of evidence[19] and White retracted his claim.[20] White's claims and the ensuing criticism surrounded original research by John Olney.
In 1989, John Olney discovered that neuronal vacuolation and other cytotoxic changes ("lesions") occurred in brains of rats administered NMDA antagonists, including PCP and ketamine.[21] Repeated doses of NMDA antagonists led to cellular tolerance and hence continuous exposure to NMDA antagonists did not lead to cumulative neurotoxic effects. Antihistamines such as diphenhydramine, barbiturates and even diazepam have been found to prevent NAN.[22] LSD and DOB have also been found to prevent NAN.[23]

[edit] Deliriants

Deliriants, as their name implies, induce a state of delirium in the user, characterized by extreme confusion and an inability to control one's actions. They are called deliriants because their subjective effects are similar to the experiences of people with delirious fevers.
Included in this group are such plants as Atropa belladonna (deadly nightshade), Brugmansia species (Angel's Trumpet), Datura stramonium (Jimson weed), Hyoscyamus niger (henbane), Mandragora officinarum (mandrake), and Myristica fragrans (nutmeg), as well as a number of pharmaceutical drugs, when taken in very high doses, such as diphenhydramine (Benadryl) and its close relative dimenhydrinate (Dramamine). Uncured tobacco is also a deliriant due to its intoxicatingly high levels of nicotine.[24]
In addition to the dangers of being far more disconnected from reality than with other drugs and retaining a truly fragmented dissociation from regular consciousness without being immobilized, the anticholinergics are toxic, carry the risk of death by overdose, and also include a number of uncomfortable side effects. These side effects usually include dehydration and mydriasis (dilation of the pupils).
Most modern-day psychonauts who use deliriants report similar or identical hallucinations and challenges. For example, diphenhydramine, as well as dimenhydrinate, when taken in a high enough dosage, often are reported to evoke vivid, dark, and entity-like hallucinations, peripheral disturbances, feelings of being alone but simultaneously of being watched, and hallucinations of real things ceasing to exist. Deliriants also may cause confusion or even rage, and thus have been used by ancient peoples as a stimulant before going into battle.[25]

[edit] History of use

Hallucinogenic substances are among the oldest drugs used by human kind, as hallucinogenic substances naturally occur in mushrooms, cacti and a variety of other plants. Numerous cultures worldwide have endorsed the use of hallucinogens in medicine, religion and recreation, to varying extents, while some cultures have regulated or outright prohibited their use. In most developed countries today, the possession of many hallucinogens, even those found commonly in nature, is considered a crime punishable by fines, imprisonment or even death. In some countries, such as the United States and the Netherlands, partial deference may be granted to traditional religious use by members of indigenous ethnic minorities such as the Native American Church and the Santo Daime Church. Recently the União do Vegetal, a Christian-based religious sect whose composition is not primarily ethnicity-based, won a United States Supreme Court decision authorizing its use of ayahuasca. However, in Brazil, ayahuasca use in a religious context has been legal since 1987. In fact, it is a common belief among members of the União do Vegetal that ayahuasca presents no risk for adolescents within the church, as long as they take it within a religious context.[26]

[edit] Traditional religious and shamanic use

Historically, hallucinogens have been most commonly used in religious or shamanic rituals. In this context they are referred to as entheogens, and they are used to facilitate healing, divination, communication with spirits, and coming-of-age ceremonies. Evidence exists for the use of entheogens in prehistoric times, as well as in numerous ancient cultures, including the Rus', Ancient Egyptian, Mycenaean, Ancient Greek, Vedic, Maya, Inca and Aztec cultures. The Upper Amazon is home to the strongest extant entheogenic tradition; the Urarina of Peruvian Amazonia, for instance, continue to practice an elaborate system of Ayahuasca shamanism, coupled with an animistic belief system.[27]
Urarina shaman, 1988
Shamans consume hallucinogenic substances in order to induce a trance. Once in this trance, shamans are able to communicate with the spirit world, and can often see what is causing their patients illness. The Aguaruna of Peru believe that many illnesses are caused by the darts of sorcerers. Under the influence of yaji, a hallucinogenic drink, Aguaruna shamans are able to discover and remove darts from their patients.[28]

[edit] Early scientific investigations

Although natural hallucinogenic drugs have been known to mankind for millennia, it was not until the early 20th century that they received extensive attention from Western science. Earlier beginnings include scientific studies of nitrous oxide in the late 18th century, and initial studies of the constituents of the peyote cactus in the late 19th century. Starting in 1927 with Kurt Beringer's Der Meskalinrausch (The Mescaline Intoxication), more intensive effort began to be focused on studies of psychoactive plants. Around the same time, Louis Lewin published his extensive survey of psychoactive plants, Phantastica (1928). Important developments in the years that followed included the re-discovery of Mexican psilocybin mushrooms (in 1936 by Robert J. Weitlaner) and Christmas vine (in 1939 by Richard Evans Schultes). Arguably the most important pre-World War II development was by Albert Hofmann's 1938 discovery of the semi-synthetic drug LSD, which was later discovered to produce hallucinogenic effects in 1943.

[edit] Hallucinogens after World War II

After World War II there was an explosion of interest in hallucinogenic drugs in psychiatry, owing mainly to the invention of LSD. Interest in the drugs tended to focus on either the potential for psychotherapeutic applications of the drugs (see psychedelic psychotherapy), or on the use of hallucinogens to produce a "controlled psychosis", in order to understand psychotic disorders such as schizophrenia. By 1951, more than 100 articles on LSD had appeared in medical journals, and by 1961, the number had increased to more than 1000 articles.[29] Hallucinogens were also researched in several countries for their potential as agents of chemical warfare. Most famously, several incidents associated with the CIA's MK-ULTRA mind control research project have been the topic of media attention and lawsuits.
At the beginning of the 1950s, the existence of hallucinogenic drugs was virtually unknown among the general public of the West. However this soon changed as several influential figures were introduced to the hallucinogenic experience. Aldous Huxley's 1953 essay The Doors of Perception, describing his experiences with mescaline, and R. Gordon Wasson's 1957 Life magazine article (Seeking the Magic Mushroom) brought the topic into the public limelight. In the early 1960s, counterculture icons such as Jerry Garcia, Timothy Leary, Allen Ginsberg and Ken Kesey advocated the drugs for their psychedelic effects, and a large subculture of psychedelic drug users was spawned. Psychedelic drugs played a major role in catalyzing the vast social changes initiated in the 1960s.[30][31] As a result of the growing popularity of LSD and disdain for the hippies with whom it was heavily associated, LSD was banned in the United States in 1967.[32] This greatly reduced the clinical research about LSD, although limited experiments continued to take place, such as those conducted by Reese Jones in San Francisco.[33]
As early as the 1960s, research into the medicinal properties of LSD was being conducted. It has been found that LSD is a fairly effective treatment for mental disorders such as obsessive compulsive disorder (OCD). "Savage et al. (1962) provided the earliest report of efficacy for a hallucinogen in OCD, where after two doses of LSD, a patient who suffered from depression and violent obsessive sexual thoughts experienced dramatic and permanent improvement (Nichols 2004: 164)." LSD, along with other hallucinogens, possesses a considerable amount of medicinal properties, which is why further research on the medical uses of hallucinogens is paramount.[34]

[edit] Legal status and attitudes

As of 2008, most well known hallucinogens (aside from dextromethorphan, diphenhydramine and dimenhydrinate) are illegal in most Western countries. In the United States hallucinogens are classified as a schedule 1 drug. The 3-pronged test for schedule 1 drugs is as follows. The drug has no currently accepted medical use, there is a lack of safety for the use of the drug under medical supervision, and the substance has a high potential for abuse.[35] One notable exception to the current criminalization trend is in parts of Western Europe, especially in the Netherlands, where cannabis is considered to be a "soft drug". Previously included were hallucinogenic mushrooms, but as of October 2007 the Netherlands officials have moved to ban their sale following several widely publicized incidents involving tourists. While the possession of soft drugs is technically illegal, the Dutch government has decided that using law enforcement to combat their use is largely a waste of resources. As a result, public "coffeeshops" in the Netherlands openly sell cannabis for personal use, and "smart shops" sell drugs like Ayahuasca, Salvia divinorum, and until the ban of psilocybin mushrooms took effect, they were still available for purchase in smartshops as well. (See Drug policy of the Netherlands).
Despite being scheduled as a controlled substance in the mid 1980s, MDMA's popularity has been growing since that time in western Europe and in the United States.
Attitudes towards hallucinogens other than cannabis have been slower to change. Several attempts to change the law on the grounds of freedom of religion have been made. Some of these have been successful, for example the Native American Church in the United States, and Santo Daime in Brazil. Some people argue that a religious setting should not be necessary for the legitimacy of hallucinogenic drug use, and for this reason also criticize the euphemistic use of the term "entheogen". Non-religious reasons for the use of hallucinogens including spiritual, introspective, psychotherapeutic, recreational and even hedonistic motives, each subject to some degree of social disapproval, have all been defended as the legitimate exercising of civil liberties, including freedom of thought and freedom of self-harm.
Some people connect the idea of being "high" or going through a psychedelic state, as having brain damage or going crazy. This is due to the effect of the drug which, in some cases, can be overwhelming. Effects of these drugs may mimic psychological conditions such as psychosis, schizophrenia, and thought disorder, but there have not yet been studies confirming any real similarities between these different states of mind.
Several medical and scientific experts, including the late Albert Hofmann, advocate the drugs should not be banned, but should be strongly regulated and warn they can be dangerous without proper psychological supervision.[36]

[edit] Psychedelics and mental illnesses in long-term users

Most psychedelics are not known to have long-term physical toxicity. However, entactogens such as MDMA that release neurotransmitters may stimulate increased formation of free radicals possibly formed from neurotransmitters released from the synaptic vesicle.[citation needed] Free radicals are associated with cell damage in other contexts, and have been suggested to be involved in many types of mental conditions including Parkinson's disease, senility, schizophrenia, and Alzheimer's. Research on this question has not reached a firm conclusion. The same concerns do not apply to psychedelics that do not release neurotransmitters, such as LSD, nor to dissociatives or deliriants.
No clear connection has been made between psychedelic drugs and organic brain damage. However, hallucinogen persisting perception disorder (HPPD) is a diagnosed condition wherein certain visual effects of drugs persist for a long time, sometimes permanently, although science and medicine have yet to determine what causes the condition.

[edit] Naming and taxonomy

[edit] Psychedelic nomenclature

The class of drugs described in this article has been described by a profusion of names, most of which are associated with a particular theory of their nature.
Louis Lewin started out in 1928 by using the word phantastica as the title of his ground-breaking monograph about plants that, in his words, "bring about evident cerebral excitation in the form of hallucinations, illusions and visions [...] followed by unconsciousness or other symptoms of altered cerebral functioning". But no sooner had the term been invented, or Lewin complained that the word "does not cover all that I should wish it to convey", and indeed with the proliferation of research following the discovery of LSD came numerous attempts to improve on it, such as hallucinogen, phanerothyme, psychedelic, psychotomimetic, psychogenic, schizophrenogenic, cataleptogenic, mysticomimetic, psychodysleptic, and entheogenic.
The word psychotomimetic, meaning "mimicking psychosis", reflects the hypothesis of early researchers that the effects of psychedelic drugs are similar to naturally-occurring symptoms of schizophrenia, though it has since been discovered that some psychedelics resemble endogenous psychoses better than others. PCP and ketamine are known to better resemble endogenous psychoses because they reproduce both positive and negative symptoms of psychoses, while psilocybin and related hallucinogens typically produce effects resembling only the positive symptoms of schizophrenia.[37] While the serotonergic psychedelics (LSD, psilocybin, mescaline, etc.) do produce subjective effects distinct from NMDA antagonist dissociatives (PCP, ketamine, dextrorphan), there is obvious overlap in the mental processes that these drugs affect and research has discovered that there is overlap in the mechanisms by which both types of psychedelics mimic psychotic symptoms.[38][39][40] One double-blind study examining the differences between DMT and ketamine hypothesized that classically psychedelic drugs most resemble paranoid schizophrenia while dissociative drugs best mimicked catatonic subtypes or otherwise undifferentiated schizophrenia.[41] The researchers expressed the view that "a heterogeneous disorder like schizophrenia is unlikely to be modeled accurately by a single pharmacological agent."
The word psychedelic was coined by Humphrey Osmond and has the rather mysterious but at least somewhat value-neutral meaning of "mind manifesting". The word entheogen, on the other hand, which is often used to describe the religious and ritual use of psychedelic drugs in anthropological studies, is associated with the idea that it could be relevant to religion. The words entactogen, empathogen, dissociative and deliriant, at last, have all been coined to refer to classes of drugs similar to the classical psychedelics that seemed deserving of a name of their own.
Many different names have been proposed over the years for this drug class. The famous German toxicologist Louis Lewin used the name phantastica earlier in this century, and as we shall see later, such a descriptor is not so farfetched. The most popular names—hallucinogen, psychotomimetic, and psychedelic ("mind manifesting")—have often been used interchangeably. Hallucinogen is now, however, the most common designation in the scientific literature, although it is an inaccurate descriptor of the actual effects of these drugs. In the lay press, the term psychedelic is still the most popular and has held sway for nearly four decades. Most recently, there has been a movement in nonscientific circles to recognize the ability of these substances to provoke mystical experiences and evoke feelings of spiritual significance. Thus, the term entheogen, derived from the Greek word entheos, which means "god within", was introduced by Ruck et al. and has seen increasing use. This term suggests that these substances reveal or allow a connection to the "divine within". Although it seems unlikely that this name will ever be accepted in formal scientific circles, its use has dramatically increased in the popular media and on internet sites. Indeed, in much of the counterculture that uses these substances, entheogen has replaced psychedelic as the name of choice and we may expect to see this trend continue.[4]

[edit] Taxonomy

Hallucinogens can be classified by their subjective effects, mechanisms of action, and chemical structure. These classifications often correlate to some extent. In this article, they are classified as psychedelics, dissociatives, and deliriants, preferably entirely to the exclusion of the inaccurate word hallucinogen, but the reader is well advised to consider that this particular classification is not universally accepted. The taxonomy used here attempts to blend these three approaches in order to provide as clear and accessible an overview as possible.
Almost all hallucinogens contain nitrogen and are therefore classified as alkaloids. THC and salvinorin A are exceptions. Many hallucinogens have chemical structures similar to those of human neurotransmitters, such as serotonin, and temporarily modify the action of neurotransmitters and/or receptor sites.

[edit] Lewin's classes

A classical classification, mainly of historical interest, is that of Lewin (Phantastica, 1928):
Class I Phantastica roughly correspond to the psychedelics, which is a more modern term usually used as synonym to "hallucinogen" by people with positive attitudes towards them. Here the term is used a bit differently to discriminate one particular class of hallucinogens which it seems to describe best. They typically have no sedative effects (sometimes the opposite) and there is usually a clearcut memory to their effects. These drugs have also been referred to as the "classical" hallucinogens.
Class II Phantastica correspond to the other classes in our scheme. They tend to sedate in addition to their hallucinogenic properties and there often is an impaired memory trace after the effects wear off.

[edit] Pharmacological classes of hallucinogens

One possible way of classifying the hallucinogens is by their chemical structure and that of the receptors they act on. In this vein, the following categories are often used:
Problems with structure-based frameworks is that the same structural motif can include a wide variety of drugs which have substantially different effects. For example, both methamphetamine and MDMA are substituted amphetamines, but methamphetamine has a much stronger stimulant action than ecstasy, with none of the latter's empathogenic effects. Also, drugs commonly act on more than one receptor; DXM, for instance, is primarily dissociative in high doses, but also acts as a serotonin reuptake inhibitor, similar to many phenethylamines and in fact, the phenethylamine moiety is embedded in the structure of DXM. LSD also contains both the indole backbone and the phenethylamine moiety.
Even so, in many cases structure-based frameworks are still very useful, and the identification of a biologically active pharmacophore and synthesis of analogues of known active substances remains an integral part of modern medicinal chemistry.

[edit] List of natural hallucinogens

[edit] See also

[edit] Footnotes

  1. ^ Glennon RA. Classical drugs: an introductory overview. In Lin GC and Glennon RA (eds). Hallucinogens: an update. National Institute on Drug Abuse: Rockville, MD, 1994.
  2. ^ a b Freedman, D X (1969). "The Psychopharmacology of Hallucinogenic Agents". Annual Review of Medicine 20: 409–18. doi:10.1146/annurev.me.20.020169.002205. PMID 4894506.
  3. ^ Glennon, R (1999). "Arylalkylamine Drugs of Abuse An Overview of Drug Discrimination Studies". Pharmacology Biochemistry and Behavior 64: 251–6. doi:10.1016/S0091-3057(99)00045-3.
  4. ^ a b Nichols, D (2004). "Hallucinogens". Pharmacology & Therapeutics 101: 131–81. doi:10.1016/j.pharmthera.2003.11.002. PMID 14761703.
  5. ^ Huxley, Aldous (1954). The Doors of Perception. London: Harper & Bros. pp. 63. ISBN 0-09-945820-9. http://mescaline.com/huxley.htm. Retrieved 8 March 2006.
  6. ^ Pender, John W. (November 1970). "Dissociative Anesthesia". California Medicine 113 (5): 73. PMC 1501800. PMID 18730444. //www.ncbi.nlm.nih.gov/pmc/articles/PMC1501800/.
  7. ^ Pender, John W. (October 1972). "Dissociative Anesthesia". California Medicine 117 (4): 46–47. PMC 1518731. PMID 18730832. //www.ncbi.nlm.nih.gov/pmc/articles/PMC1518731/.
  8. ^ American Psychiatric Association. Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: American Psychiatric Association, 2000.
  9. ^ Simeon, Daphne; Gross, Shira; Guralnik, Orna; Stein, Dan J.; Schmeidler, James; Hollander, Eric (08/01/1997). "Feeling unreal: 30 cases of DSM-III-R depersonalization disorder". American Journal of Psychiatry 154 (8): 1107–13. PMID 9247397. http://ajp.psychiatryonline.org/cgi/pmidlookup?view=long&pmid=9247397.
  10. ^ Nathan. Mostly not regretful. Erowid Experience Valuts. 29 October 2006.
  11. ^ Keil. Like nothing else in the world. Erowid Experience Vaults. 11 August 2003.
  12. ^ Simeon, Daphne (2004). "Depersonalisation disorder: a contemporary overview.". CNS Drugs 18 (6): 343–54. PMID 15089102. http://content.wkhealth.com/linkback/openurl?issn=1172-7047&volume=18&issue=6&spage=343.
  13. ^ Herling, Seymore; Coale, Edward H.; Hein, David W.; Winger, Gail; Woods, James H. (1981). "Similarity of the discriminative stimulus effects of ketamine, cyclazocine, and dextrorphan in the pigeon". Psychopharmacology 73 (3): 286–91. doi:10.1007/BF00422419. PMID 6787651.
  14. ^ Herling, S; Woods, JH (1981). "IV. Discriminative stimulus effects of narcotics: Evidence for multiple receptor-mediated actions". Life Sciences 28 (14): 1571–84. doi:10.1016/0024-3205(81)90311-8. PMID 6264253.
  15. ^ Nicholson, Katherine L.; Hayes, Belinda A.; Balster, R. L. (1999). "Evaluation of the reinforcing properties and phencyclidine-like discriminative stimulus effects of dextromethorphan and dextrorphan in rats and rhesus monkeys". Psychopharmacology 146 (1): 49–59. doi:10.1007/s002130051087. PMID 10485964.
  16. ^ Roth, B. L. (2002). "Salvinorin A: A potent naturally occurring nonnitrogenous kappa opioid selective agonist". Proceedings of the National Academy of Sciences 99: 11934–9. doi:10.1073/pnas.182234399. PMC 129372. PMID 12192085. //www.ncbi.nlm.nih.gov/pmc/articles/PMC129372/.
  17. ^ Price, William A.; Giannini, Matthew C.; Giannini, A. James (1984). "Antidotal Strategies in Phencyclidine Intoxication". The International Journal of Psychiatry in Medicine 14: 315–21. doi:10.2190/KKAW-PWGF-W7RQ-23GN.
  18. ^ White W. (1998) This is your brain on dissociatives (accessed 23 October 2010)
  19. ^ Anderson C. (2003) The bad news isn't in (Accessed 23 October 2010)
  20. ^ White W. (2004) Response to "The Bad News Isn't In": Please Pass the Crow (accessed 23 October 2010)
  21. ^ Olney, J.; Labruyere, J; Price, M. (1989). "Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs". Science 244 (4910): 1360–2. doi:10.1126/science.2660263. PMID 2660263.
  22. ^ Farber, N B; Kim, S H; Dikranian, K; Jiang, X P; Heinkel, C (2002). "Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity". Molecular Psychiatry 7 (1): 32–43. doi:10.1038/sj/mp/4000912. PMID 11803444.
  23. ^ Farber, M.d., N; Hanslick, J; Kirby, C; McWilliams, L; Olney, JW (1998). "Serotonergic Agents That Activate 5HT2A Receptors Prevent NMDA Antagonist Neurotoxicity". Neuropsychopharmacology 18 (1): 57–62. doi:10.1016/S0893-133X(97)00127-9. PMID 9408919.
  24. ^ http://books.google.com/books?id=UGI4hxx6mTQC&pg=PA354&lpg=PA354&dq=indians+large+doses+of+tobacco&source=bl&ots=i6E_MZIP9M&sig=ELQS-TtwQmsVMpWT0R6NyPc-Khg&hl=en&ei=A7ASTeW2LYH98AaY7ejIDQ&sa=X&oi=book_result&ct=result&resnum=8&ved=0CEQQ6AEwBw#v=onepage&q=indians%20large%20doses%20of%20tobacco&f=false Retrieved 22 December 2010.
  25. ^ Library.thinkquest.org
  26. ^ "Ayahuasca in Adolescence: A Preliminary Psychiatric Assessment." Journal of Psychoactive Drugs 37.2 (2005): 129-133.
  27. ^ Bartholomew Dean 2009 Urarina Society, Cosmology, and History in Peruvian Amazonia, Gainesville: University Press of Florida ISBN 978-0-8130-3378-5 UPF.com
  28. ^ "Shamanism and Its Discontents." Medical Anthropology Quarterly 2.2 (1988): 102-20.
  29. ^ Dyck, Erika (2005). "Flashback: Psychiatric Experimentation With LSD in Historical Perspective". The Canadian Journal of Psychiatry 50 (7): 381–388. http://server03.cpa-apc.org:8080/Publications/archives/CJP/2005/june/cjp-june-05-dyck-IR.pdf. Retrieved 8 March 2006.
  30. ^ Ken Goffman. Counterculture through the Ages; from Abraham to Acid House. New York: Villard, 2004. Chapters 11–13.
  31. ^ Brink Lindsey. The Age of Abundance; How Prosperity Transformed America's Politics and Culture. New York: Collins, 2007. p.156: "...pot and psychedelics revealed to their users wildly different visions of reality from the "straight" one everybody took for granted. ... Guided into those transcendent realms, many young andimpressionable minds were set aflame with visions of radical change. ... Antiwar protesters, feminists, student rebels, environmentalists, and gays all took their turns marching to the solemn strains of "We Shall Overcome"..."
  32. ^ Goffman, ibidem, p.266–7: "By normative social standards, something unseemly was going on, but since LSD, the catalyst that was unleashing the celebratory chaos, was still legal [in 1966], there was little [the authorities] could do... [That year, a]cross the nation, states started passing laws prohibiting LSD. .... By their panic, as expressed through their prohibitionary legislation, the conservative forces teased out what was perhaps the central countercultural progression for this epoch."
  33. ^ Francom P; Andrenyak D; Lim HK; Bridges RR; Foltz RL; Jones RT (January–February 1988). "Determination of LSD in urine by capillary column gas chromatography and electron impact mass spectrometry". Journal of analytical toxicology 12 (1): 1–8. PMID 3352236.
  34. ^ Nichols, David. "Hallucinogens ." Pharmacology & Therapeutics 101.2 (2004): 131-81.
  35. ^ Nichols, David. "Hallucinogens ." Pharmacology & Therapeutics 101.2 (2004): 131-81. Web. 29 March 2011.
  36. ^ Smith, Craig S. (7 January 2006). "The Saturday Profile; Nearly 100, LSD's Father Ponders His 'Problem Child'". The New York Times. http://query.nytimes.com/gst/fullpage.html?res=9505E3DB153FF934A35752C0A9609C8B63&sec=&pagewanted=2. Retrieved 22 May 2010.
  37. ^ Vollenweider, F; Geyer, MA (2001). "A systems model of altered consciousness: integrating natural and drug-induced psychoses". Brain Research Bulletin 56 (5): 495–507. doi:10.1016/S0361-9230(01)00646-3. PMID 11750795.
  38. ^ Aghajanian, G; Marek, GJ (2000). "Serotonin model of schizophrenia: emerging role of glutamate mechanisms". Brain Research Reviews 31 (2-3): 302–12. doi:10.1016/S0165-0173(99)00046-6. PMID 10719157.
  39. ^ Svenningsson, P.; Tzavara, ET; Carruthers, R; Rachleff, I; Wattler, S; Nehls, M; McKinzie, DL; Fienberg, AA et al. (2003). "Diverse Psychotomimetics Act Through a Common Signaling Pathway". Science 302 (5649): 1412–5. doi:10.1126/science.1089681. PMID 14631045.
  40. ^ Tsapakis, E. M. (2002). "Glutamate and psychiatric disorders". Advances in Psychiatric Treatment 8: 189–97. doi:10.1192/apt.8.3.189.
  41. ^ Gouzoulis-Mayfrank, E.; Heekeren, K.; Neukirch, A.; Stoll, M.; Stock, C.; Obradovic, M.; Kovar, K.-A. (2005). "Psychological Effects of (S)-Ketamine and N,N-Dimethyltryptamine (DMT): A Double-Blind, Cross-Over Study in Healthy Volunteers". Pharmacopsychiatry 38 (6): 301–11. doi:10.1055/s-2005-916185. PMID 16342002.

[edit] References

[edit] Further reading

The literature about psychedelics, dissociatives and deliriants is vast. The following books provide accessible and up-to-date introductions to this literature:
  • Ann & Alexander Shulgin: PIHKAL (Phenethylamines I Have Known And Loved), a Chemical Love Story
  • Ann & Alexander Shulgin: TIHKAL (Tryptamines I Have Known And Loved), the Continuation
  • Charles S. Grob, ed.: Hallucinogens, a reader
  • Winkelman, Michael J., and Thomas B. Roberts (editors) (2007).Psychedelic Medicine: New Evidence for Hallucinogens as Treatments 2 Volumes. Westport, CT: Praeger/Greenwood.

[edit] External links

  • Erowid is a web site dedicated entirely to providing information about psychoactive drugs, with an impressive collection of trip reports, materials collected from the web and usenet, and a bibliography of scientific literature
  • Evidence: Academic resources on hallucinogens- and MDMA research, relapse prevention and harm reduction.
  • The Shroomery has detailed information about magic mushrooms including identification, cultivation and spores, psychedelic images, trip reports and an active community.
  • Multidisciplinary Association for Psychedelic Studies is a nonprofit research and educational organization which carries out clinical trials and other research in order to assess the potential medicinal uses of psychedelic drugs and develop them into medicines.

No comments:

Post a Comment

The Occult

  For other uses, see   Occult (disambiguation) . Not to be confused with  Cult . Part of  a series  on the Paranormal show Main articles sh...